# SuperLU: Sparse Direct Solver and Preconditioner

X. Sherry Li xsli@lbl.gov http://crd.lbl.gov/~xiaoye/SuperLU

Argonne Training Program on Extreme-Scale Computing (ATPESC)
August 8, 2014

#### Acknowledgements



- Supports from DOE, NSF, DARPA
  - FASTMath (Frameworks, Algorithms and Scalable Technologies for Mathematics)
  - **TOPS (Towards Optimal Petascale Simulations)**
  - CEMM (Center for Extended MHD Modeling)
- Developers and contributors
  - Sherry Li, LBNL
  - James Demmel, UC Berkeley
  - John Gilbert, UC Santa Barbara
  - Laura Grigori, INRIA, France
  - Meiyue Shao, Umeå University, Sweden
  - Pietro Cicotti, UC San Diego
  - Piyush Sao, Gerogia Tech
  - Daniel Schreiber, UIUC
  - Yu Wang, U. North Carolina, Charlotte
  - Ichitaro Yamazaki, LBNL
  - Eric Zhang, Albany High School

#### Quick installation



- Download site <a href="http://crd.lbl.gov/~xiaoye/SuperLU">http://crd.lbl.gov/~xiaoye/SuperLU</a>
  - Users' Guide, HTML code documentation
- Gunzip, untar
- Follow README at top level directory
  - Edit make.inc for your platform (compilers, optimizations, libraries, ...) (may move to autoconf in the future)
  - Link with a fast BLAS library
    - The one under CBLAS/ is functional, but not optimized
    - Vendor, GotoBLAS, ATLAS, ...

#### Outline of Tutorial



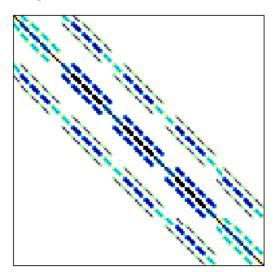
- Functionality
- Sparse matrix data structure, distribution, and user interface
- Background of the algorithms
  - Differences between sequential and parallel solvers
- Examples, Fortran 90 interface
- Hands on exercises

#### Solve sparse Ax=b : lots of zeros in matrix

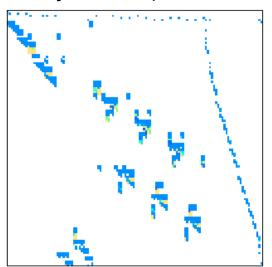


- fluid dynamics, structural mechanics, chemical process simulation, circuit simulation, electromagnetic fields, magneto-hydrodynamics, seismic-imaging, economic modeling, optimization, data analysis, statistics, . . .
- Example: A of dimension 10<sup>6</sup>, 10~100 nonzeros per row
- Matlab: > spy(A)

Boeing/msc00726 (structural eng.)



Mallya/lhr01 (chemical eng.)



## Strategies of sparse linear solvers



- Solving a system of linear equations Ax = b
  - Sparse: many zeros in A; worth special treatment
- Iterative methods: (e.g., Krylov, multigrid, ...)
  - A is not changed (read-only)
  - Key kernel: sparse matrix-vector multiply
  - Easier to optimize and parallelize
  - Low algorithmic complexity, but may not converge
- Direct methods
  - A is modified (factorized)
  - Harder to optimize and parallelize
  - Numerically robust, but higher algorithmic complexity
- Often use direct method to precondition iterative method
  - Solve an easy system:  $M^{-1}Ax = M^{-1}b$

#### Available direct solvers



Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

- **■** LL<sup>T</sup> (s.p.d.)
- LDL<sup>T</sup> (symmetric indefinite)
- **■** LU (nonsymmetric)
- QR (least squares)
- Sequential, shared-memory (multicore), distributed-memory, out-ofcore
  - GPU, FPGA become active.
- Distributed-memory codes: usually MPI-based
  - SuperLU\_DIST [Li/Demmel/Grigori/Yamazaki]
    - accessible from PETSc, Trilinos, . . .
  - MUMPS, PasTiX, WSMP, . . .

## SuperLU Functionality



- LU decomposition, triangular solution
- Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)
- Transposed system, multiple RHS
- Sparsity-preserving ordering
  - Minimum degree ordering applied to A<sup>T</sup>A or A<sup>T</sup>+A [MMD, Liu `85]
  - 'Nested-dissection' applied to A<sup>T</sup>A or A<sup>T</sup>+A [(Par)Metis, (PT)-Scotch]
- User-controllable pivoting
  - Pre-assigned row and/or column permutations
  - Partial pivoting with threshold
- **Equilibration:**  $D_rAD_c$
- Condition number estimation
- Iterative refinement
- Componentwise error bounds [Skeel `79, Arioli/Demmel/Duff `89]

#### Software Status



|                | SuperLU                     | SuperLU_MT                  | SuperLU_DIST                  |
|----------------|-----------------------------|-----------------------------|-------------------------------|
| Platform       | Serial                      | SMP, multicore              | Distributed memory            |
| Language       | C                           | C + Pthreads<br>or OpenMP   | C + MPI +<br>OpenMP +<br>CUDA |
| Data type      | Real/complex, Single/double | Real/complex, Single/double | Real/complex, Double          |
| Data structure | CCS / CRS                   | CCS / CRS                   | Distributed CRS               |

- Fortran interfaces
- SuperLU\_MT similar to SuperLU both numerically and in usage

#### Usage of SuperLU



#### Industry

- Cray Scientific Libraries
- FEMLAB
- HP Mathematical Library
- IMSL Numerical Library
- NAG
- Sun Performance Library
- Python (NumPy, SciPy)

#### Research

- In FASTMath Tools: Hypre, PETSc, Trilinos, ...
- M3D-C¹, NIMROD (burning plasmas for fusion energys)
- Omega3P (accelerator design)

• . . .

# Data structure: Compressed Row Storage (CRS)



Store nonzeros row by row contiguously

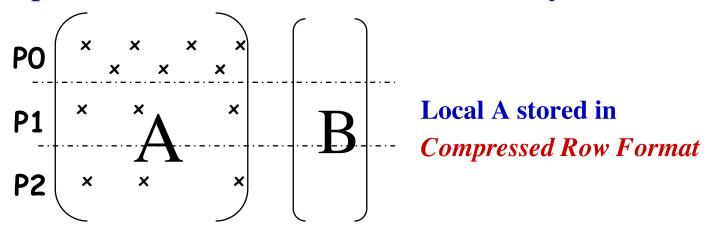
- 3 arrays:
  - Storage: NNZ reals, NNZ+N+1 integers

Many other data structures: "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods", R. Barrett et al.

## User interface - distribute input matrices



- Matrices involved:
  - A, B (turned into X) input, users manipulate them
  - L, U output, users do not need to see them
- A (sparse) and B (dense) are distributed by block rows



 Natural for users, and consistent with other popular packages: e.g. PETSc

## Distributed input interface



Each process has a structure to store local part of A
 Distributed Compressed Row Storage

```
typedef struct {
  int_t nnz_loc; // number of nonzeros in the local submatrix
  int_t m_loc; // number of rows local to this processor
  int_t fst_row; // global index of the first row
  void *nzval; // pointer to array of nonzero values, packed by row
  int_t *colind; // pointer to array of column indices of the nonzeros
  int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]
} NRformat_loc;
```

SuperLU tutorial

## Distributed Compressed Row Storage



A is distributed on 2 processors:

Processor P0 data structure:

• 
$$nnz loc = 5$$

$$m loc = 2$$

$$nzval = \{ s, u, u, | l, u \}$$

• colind = 
$$\{0, 2, 4, 0, 1\}$$

• rowptr = 
$$\{0, 3, 5\}$$

Processor P1 data structure:

• 
$$nnz loc = 7$$

$$m_{loc} = 3$$

• nzval = 
$$\{ l, p, | e, u, | l, l, r \}$$

• colind = 
$$\{1, 2, |3, 4, |0, 1, 4\}$$

• rowptr = 
$$\{0, 2, 4, 7\}$$

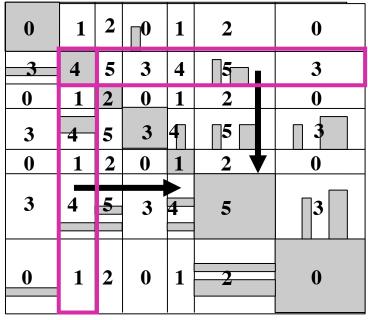




#### 2D block cyclic layout

**ACTIVE** 





#### **Process mesh**

| 0 | 1 | 2 |
|---|---|---|
| 3 | 4 | 5 |

## Process grid and MPI communicator



**Example:** Solving a preconditioned linear system

$$M^{-1}A x = M^{-1} b$$

$$M = diag(A_{11}, A_{22}, A_{33})$$

→ use SuperLU\_DIST for each diagonal block

| 0 2 | 1 3 |   |   |    |    |
|-----|-----|---|---|----|----|
|     |     | 4 | 5 |    |    |
|     |     | 6 | 7 |    |    |
|     |     |   |   | 8  | 9  |
|     |     |   |   | 10 | 11 |

- Create 3 process grids, same logical ranks (0:3),
   but different physical ranks
- Each grid has its own MPI communicator

## Two ways to create a process grid



- superlu\_gridinit( MPI\_Comm Bcomm, int nprow, int npcol, gridinfo\_t \*grid );
  - Maps the first {nprow, npcol} processes in the MPI communicator
     Bcomm to SuperLU 2D grid
- superlu\_gridmap( MPI\_Comm Bcomm, int nprow, int npcol, int usermap[], int ldumap, gridinfo\_t \*grid );
  - Maps an arbitrary set of {nprow, npcol } processes in the MPI communicator Bcomm to SuperLU 2D grid. The ranks of the selected MPI processes are given in usermap[] array.

For example:

|   | 0  | 1  | 2  |  |
|---|----|----|----|--|
| 0 | 11 | 12 | 13 |  |
| 1 | 14 | 15 | 16 |  |

#### Review of Gaussian Elimination (GE)



- Solving a system of linear equations Ax = b
- First step of GE: (make sure  $\alpha$  not too small ... Otherwise do pivoting)

$$A = \begin{bmatrix} \alpha & w^{\mathsf{T}} \\ v & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ v/\alpha & I \end{bmatrix} \cdot \begin{bmatrix} \alpha & w^{\mathsf{T}} \\ 0 & C \end{bmatrix}$$

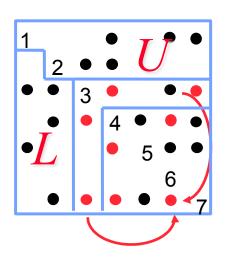
$$C = B - \frac{v \cdot w^{\mathsf{T}}}{\alpha}$$

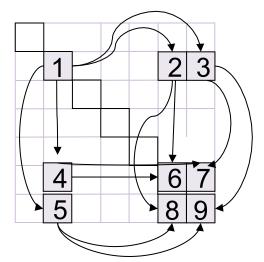
- Repeats GE on C
- Results in {L\U} decomposition (A = LU)
  - L lower triangular with unit diagonal, U upper triangular
- Then, x is obtained by solving two triangular systems with L and U

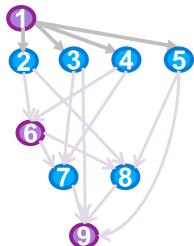
#### **Sparse factorization**



- Store A explicitly ... many sparse compressed formats
- "Fill-in" . . . new nonzeros in L & U
  - Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
- Graph algorithms: directed/undirected graphs, bipartite graphs, paths, elimination trees, depth-first search, heuristics for NP-hard problems, cliques, graph partitioning, . . .
- Unfriendly to high performance, parallel computing
  - Irregular memory access, indirect addressing, strong task/data dependency

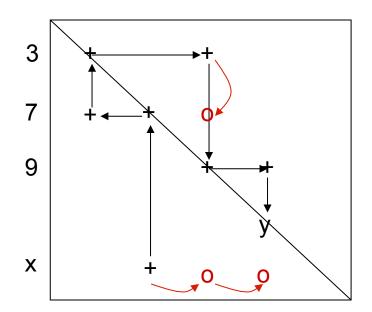






#### **Graph tool: reachable set, fill-path**





Edge (x,y) exists in filled graph G<sup>+</sup> due to the path:  $x \rightarrow 7 \rightarrow 3 \rightarrow 9 \rightarrow y$ 

• Finding fill-ins  $\leftarrow \rightarrow$  finding transitive closure of G(A)

#### **Algorithmic phases in sparse GE**

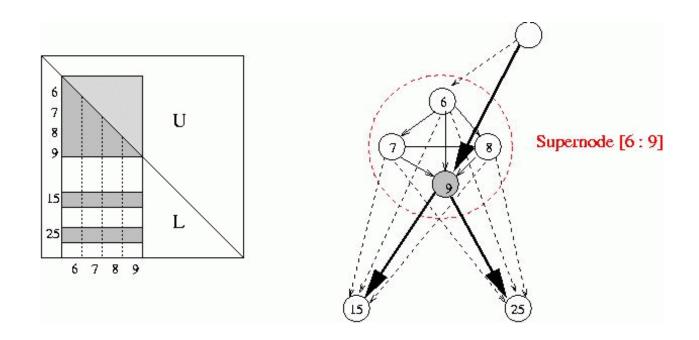


- 1. Minimize number of fill-ins, maximize parallelism (~10% time)
  - Sparsity structure of L & U depends on that of A, which can be changed by row/column permutations (vertex re-labeling of the underlying graph)
  - Ordering (combinatorial algorithms; "NP-complete" to find optimum [Yannakis '83]; use heuristics)
- 2. Predict the fill-in positions in L & U (~10% time)
  - Symbolic factorization (combinatorial algorithms)
- Design efficient data structure for storage and quick retrieval of the nonzeros
  - Compressed storage schemes
- 4. Perform factorization and triangular solutions (~80% time)
  - Numerical algorithms (F.P. operations only on nonzeros)
  - Usually dominate the total runtime
- For sparse Cholesky and QR, the steps can be separate;
   for sparse LU with pivoting, steps 2 and 4 my be interleaved.

#### General Sparse Solver



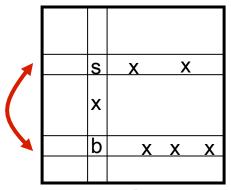
- Use (blocked) CRS or CCS, and any ordering method
  - Leave room for fill-ins! (symbolic factorization)
- **Exploit** "supernode" (dense) structures in the factors
  - Can use Level 3 BLAS
  - Reduce inefficient indirect addressing (scatter/gather)
  - Reduce graph traversal time using a coarser graph



## Numerical Pivoting



- Goal of pivoting is to control element growth in L & U for stability
  - For sparse factorizations, often relax the pivoting rule to trade with better sparsity and parallelism (e.g., threshold pivoting, static pivoting, . . .)
- Partial pivoting used in sequential SuperLU and SuperLU\_MT (GEPP)
  - Can force diagonal pivoting (controlled by diagonal threshold)
  - Hard to implement scalably for sparse factorization

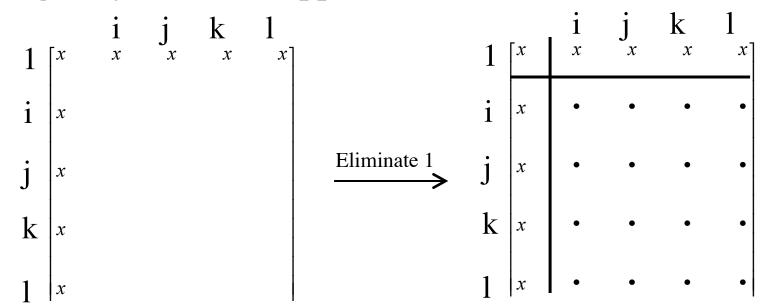


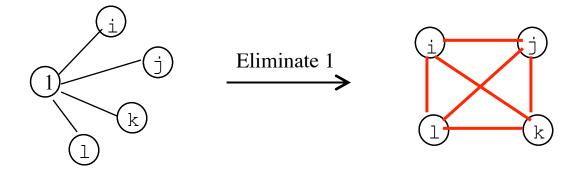
- Static pivoting used in SuperLU\_DIST (GESP)
  - Before factor, scale and permute A to maximize diagonal:  $P_r D_r A D_c = A'$
  - During factor A' = LU, replace tiny pivots by  $\sqrt{\varepsilon}\|A\|$ , without changing data structures for L & U
  - If needed, use a few steps of iterative refinement after the first solution
  - → quite stable in practice

## Ordering: Minimum Degree



#### Local greedy: minimize upper bound on fill-in

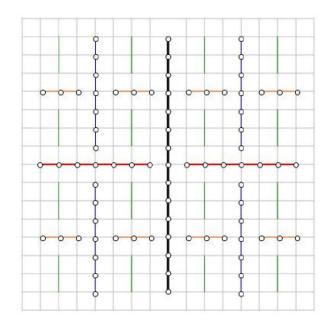


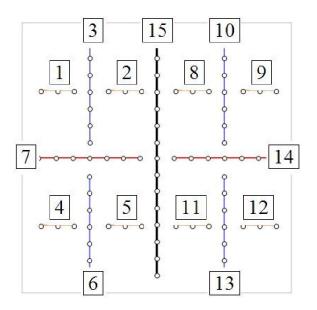


## Ordering: Nested Dissection



- Model problem: discretized system Ax = b from certain PDEs, e.g., 5-point stencil on  $n \times n$  grid,  $N = n^2$ 
  - Factorization flops:  $O(n^3) = O(N^{3/2})$
- Theorem: ND ordering gives optimal complexity in exact arithmetic [George '73, Hoffman/Martin/Rose]

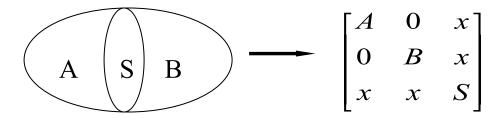




## ND Ordering



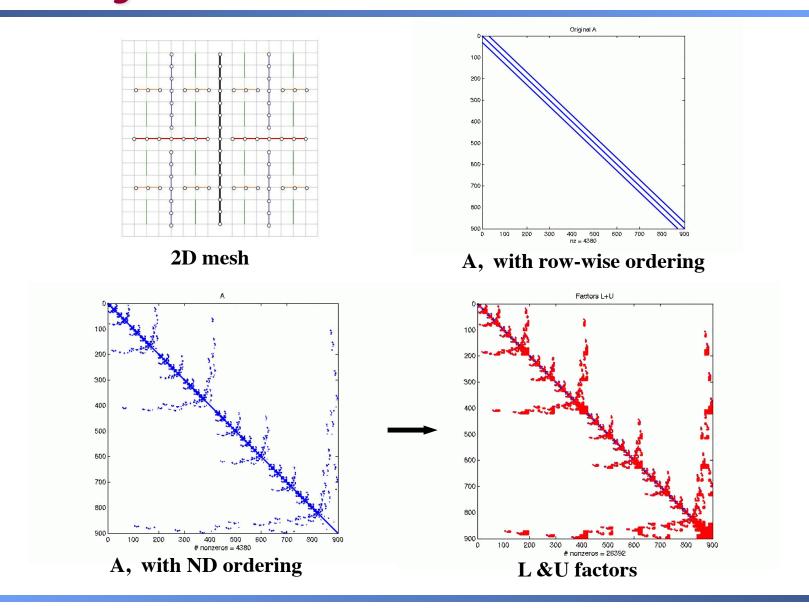
- Generalized nested dissection [Lipton/Rose/Tarjan '79]
  - Global graph partitioning: top-down, divide-and-conqure
  - Best for largest problems
  - Parallel codes available: ParMetis, PT-Scotch
  - First level



- Recurse on A and B
- Goal: find the smallest possible separator S at each level
  - Multilevel schemes:
    - Chaco [Hendrickson/Leland `94], Metis [Karypis/Kumar `95]
  - Spectral bisection [Simon et al. `90-`95]
  - Geometric and spectral bisection [Chan/Gilbert/Teng `94]

# ND Ordering





## Ordering for LU (unsymmetric)



- Can use a symmetric ordering on a symmetrized matrix
  - Case of partial pivoting (serial SuperLU, SuperLU\_MT):
     Use ordering based on A<sup>T</sup>\*A
  - Case of static pivoting (SuperLU\_DIST):
     Use ordering based on A<sup>T</sup>+A
- Can find better ordering based solely on A, without symmetrization
  - Diagonal Markowitz [Amestoy/Li/Ng `06]
    - Similar to minimum degree, but without symmetrization
  - Hypergraph partition [Boman, Grigori, et al. `08]
    - Similar to ND on  $A^{T}A$ , but no need to compute  $A^{T}A$

## Ordering Interface in SuperLU



- **Library contains the following routines:** 
  - Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
  - Utility routines: form A<sup>T</sup>+A , A<sup>T</sup>A
- Users may input any other permutation vector (e.g., using Metis, Chaco, etc.)

```
set_default_options_dist ( &options );
options.ColPerm = MY_PERMC; // modify default option
ScalePermstructInit ( m, n, &ScalePermstruct );
METIS ( ..., &ScalePermstruct.perm_c );
...
pdgssvx ( &options, ..., &ScalePermstruct, ...);
...
```

## Symbolic Factorization



- Cholesky [George/Liu `81 book]
  - Use elimination graph of L and its transitive reduction (elimination tree)
  - Complexity linear in output: O(nnz(L))

#### LU

- Use elimination graphs of L & U and their transitive reductions
   (elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]
- Improved by symmetric structure pruning [Eisenstat/Liu `92]
- Improved by supernodes
- Complexity greater than nnz(L+U), but much smaller than flops(LU)

#### Numerical Factorization



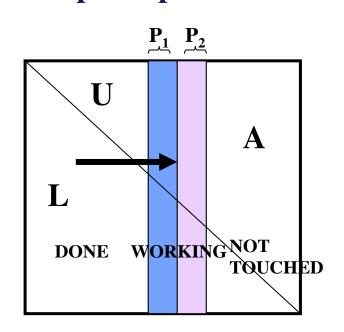
- Sequential SuperLU
  - Enhance data reuse in memory hierarchy by calling Level 3 BLAS on the supernodes
- SuperLU\_MT
  - Exploit both coarse and fine grain parallelism
  - Employ dynamic scheduling to minimize parallel runtime
- SuperLU\_DIST
  - Enhance scalability by static pivoting and 2D matrix distribution

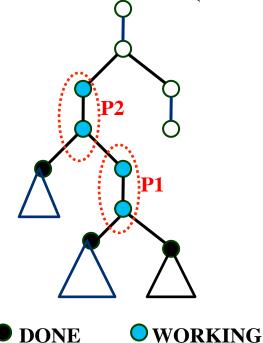
## SuperLU\_MT [Li/Demmel/Gilbert]



- Pthread or OpenMP
- Left-looking relatively more READs than WRITEs
- Use shared task queue to schedule ready columns in the elimination tree (bottom up)

Over 12x speedup on conventional 16-CPU SMPs (1999)

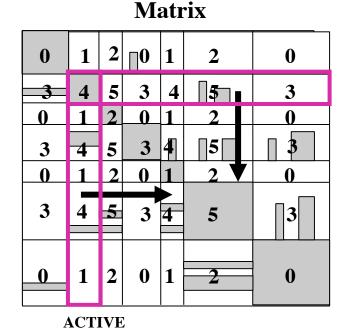






## SuperLU\_DIST [Li/Demmel/Grigori/Yamazaki]

- MPI
- Right-looking relatively more WRITEs than READs
- 2D block cyclic layout
- Look-ahead to overlap comm. & comp.
- Scales to 1000s processors



#### **Process mesh**

| 0 | 1 | 2 |  |
|---|---|---|--|
| 3 | 4 | 5 |  |

#### Multicore platforms



#### **❖Intel Clovertown:**

- > 2.33 GHz Xeon, 9.3 Gflops/core
- > 2 sockets x 4 cores/socket
- ► L2 cache: 4 MB/2 cores

#### **Sun VictoriaFalls:**

- ➤ 1.4 GHz UltraSparc T2, 1.4 Gflops/core
- > 2 sockets x 8 cores/socket x 8 hardware threads/core
- **► L2 cache shared: 4 MB**

#### Benchmark matrices



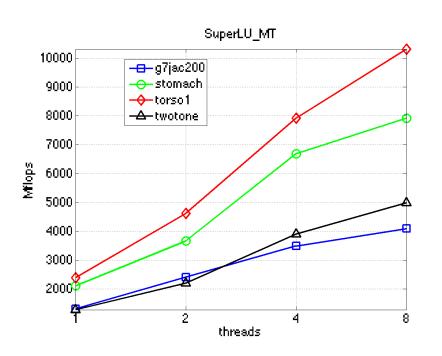
|          | apps                           | dim     | nnz(A) | SLU_MT<br>Fill | SLU_DIST<br>Fill | Avg.<br>S-node |
|----------|--------------------------------|---------|--------|----------------|------------------|----------------|
| g7jac200 | Economic model                 | 59,310  | 0.7 M  | 33.7 M         | 33.7 M           | 1.9            |
| stomach  | 3D finite diff.                | 213,360 | 3.0 M  | 136.8 M        | 137.4 M          | 4.0            |
| torso3   | 3D finite diff.                | 259,156 | 4.4 M  | 784.7 M        | 785.0 M          | 3.1            |
| twotone  | Nonlinear<br>analog<br>circuit | 120,750 | 1.2 M  | 11.4 M         | 11.4 M           | 2.3            |

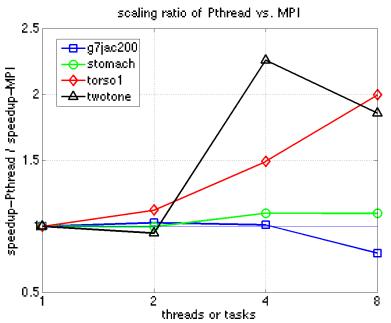
SuperLU tutorial 35

#### Intel Clovertown



- **❖**Maximum speedup 4.3, smaller than conventional SMP
- **Pthreads** scale better
- **Question:** tools to analyze resource contention?

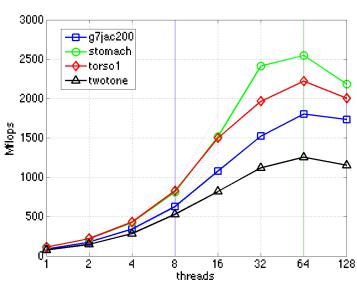


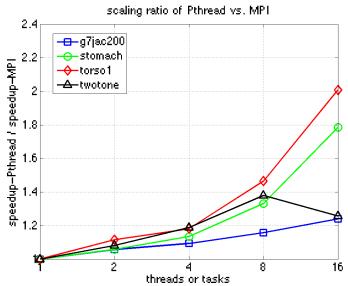


## SunVictoriaFalls - multicore + multithread

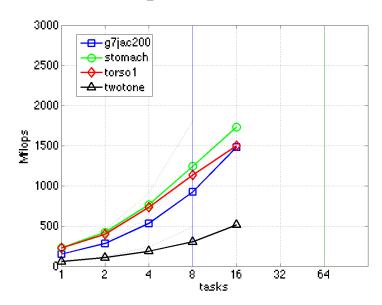








### SuperLU\_DIST



- Maximum speedup 20
- Pthreads more robust, scale better
- MPICH crashes with large #tasks, mismatch between coarse and fine grain models

# Performance of larger matrices



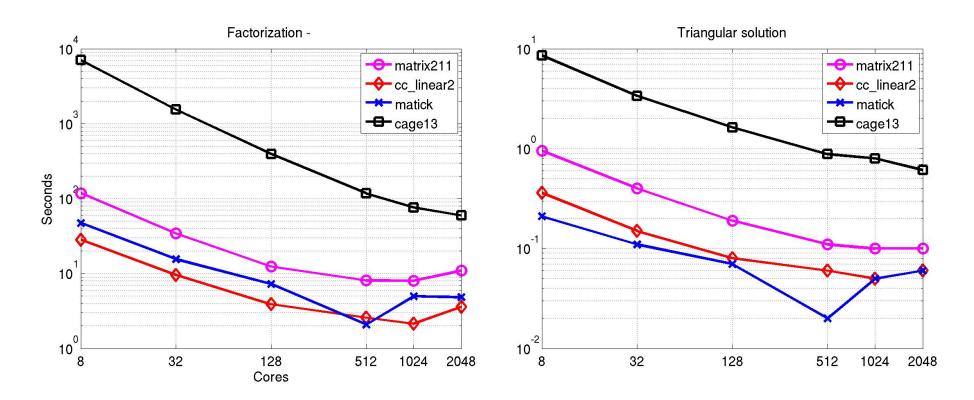
| Name       | Application                     | Data<br>type | N       | A  / N<br>Sparsity | L\U <br>(10^6) | Fill-ratio |
|------------|---------------------------------|--------------|---------|--------------------|----------------|------------|
| matrix211  | Fusion,<br>MHD eqns<br>(M3D-C1) | Real         | 801,378 | 161                | 1276.0         | 9.9        |
| cc_linear2 | Fusion,<br>MHD eqns<br>(NIMROD) | Complex      | 259,203 | 109                | 199.7          | 7.1        |
| matick     | Circuit sim. MNA method (IBM)   | Complex      | 16,019  | 4005               | 64.3           | 1.0        |
| cage13     | DNA<br>electrophoresis          | Real         | 445,315 | 17                 | 4550.9         | 608.5      |

**Sparsity ordering: MeTis applied to structure of A'+A** 

# Strong scaling (fixed size): Cray XE6 (hopper@nersc)



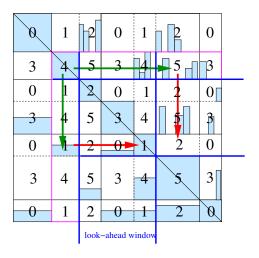
#### ■ 2 x 12-core AMD 'MagnyCours' per node, 2.1 GHz processor

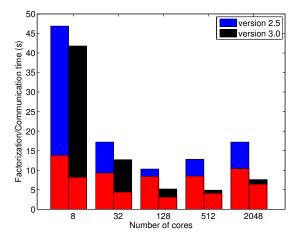


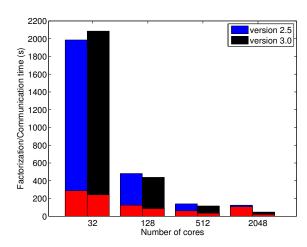
# **Up to 1.4 Tflops factorization rate**

### SuperLU\_DIST 3.0: better DAG scheduling









Accelerator, n=2.7M, fill-ratio=12

DNA, n = 445K, fill-ratio = 609

- Implemented new static scheduling and flexible look-ahead algorithms that shortened the length of the critical path.
- Idle time was significantly reduced (speedup up to 2.6x)
- To further improve performance:
  - more sophisticated scheduling schemes
  - hybrid programming paradigms

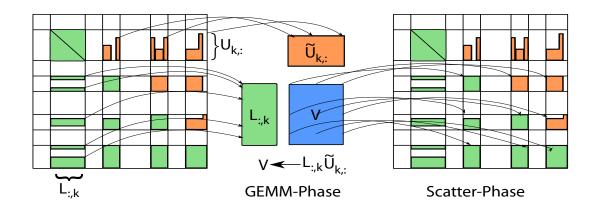
#### **Multicore / GPU-Aware**



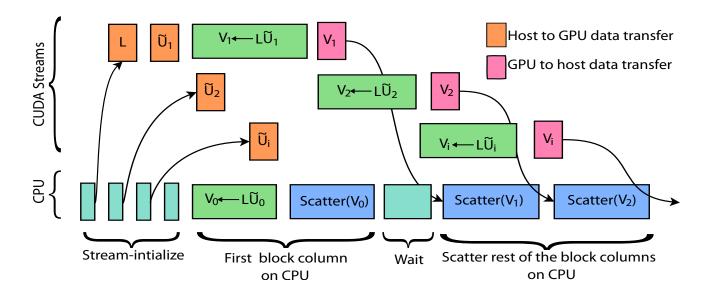
- New hybrid programming code: MPI+OpenMP+CUDA, able to use all the CPUs and GPUs on manycore computers.
- Algorithmic changes:
  - Aggregate small BLAS operations into larger ones.
  - CPU multithreading Scatter/Gather operations.
  - Hide long-latency operations.
- Results: using 100 nodes GPU clusters, up to 2.7x faster, 2x-5x memory saving.
- New SuperLU\_DIST 4.0 release, August 2014.

## **CPU + GPU algorithm**





- ① Aggregate small blocks
- **②** GEMM of large blocks
- 3 Scatter



#### GPU acceleration:

Software pipelining to overlap GPU execution with CPU Scatter, data transfer.

### ILU Interface



- Available in serial SuperLU 4.0, June 2009
- Similar to ILUTP [Saad]: "T" = threshold, "P" = pivoting
  - among the most sophisticated, more robust than structurebased dropping (e.g., level-of-fill)
- ILU driver: SRC/dgsisx.c

ILU factorization routine: SRC/dgsitrf.c

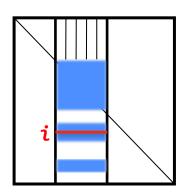
**GMRES** driver: **EXAMPLE**/ditersol.c

- Parameters:
  - ilu\_set\_default\_options ( &options )
    - options.ILU\_DropTol numerical threshold ( **7** )
    - options.ILU\_FillFactor bound on the fill-ratio (γ)

# Result of Supernodal ILU (S-ILU)



- New dropping rules S-ILU( T , γ)
  - lacktriangle supernode-based thresholding (  $\mathcal T$  )
  - adaptive strategy to meet user-desired fill-ratio upper bound (γ)



### Performance of S-ILU

- For 232 test matrices, S-ILU + GMRES converges with 138 cases (~60% success rate)
- S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES

# S-ILU for extended MHD (fusion energy sim.)



- AMD Opteron 2.4 GHz (Cray XT5)
- ILU parameters:  $\tau = 10^{-4}$ , Y = 10
- Up to 9x smaller fill ratio, and 10x faster

| Problems  | order   | Nonzeros<br>(millions) | SuperLU<br>Time | J<br>fill-ratio | S-ILU<br>time fi | II-ratio | GMRES<br>Time | S<br>Iters |
|-----------|---------|------------------------|-----------------|-----------------|------------------|----------|---------------|------------|
| matrix31  | 17,298  | 2.7 m                  | 33.3            | 13.1            | 8.2              | 2.7      | 0.6           | 9          |
| matrix41  | 30,258  | 4.7 m                  | 111.1           | 17.5            | 18.6             | 2.9      | 1.4           | 11         |
| matrix61  | 66,978  | 10.6 m                 | 612.5           | 26.3            | 54.3             | 3.0      | 7.3           | 20         |
| matrix121 | 263,538 | 42.5 m                 | X               | X               | 145.2            | 1.7      | 47.8          | 45         |
| matrix181 | 589,698 | 95.2 m                 | X               | x               | 415.0            | 1.7      | 716.0         | 289        |

# Tips for Debugging Performance



- Check sparsity ordering
- Diagonal pivoting is preferable
  - E.g., matrix is diagonally dominant, . . .
- Need good BLAS library (vendor, ATLAS, GOTO, . . .)
  - May need adjust block size for each architecture
     ( Parameters modifiable in routine sp\_ienv() )
    - Larger blocks better for uniprocessor
    - Smaller blocks better for parallellism and load balance
  - Open problem: automatic tuning for block size?

## Summary



- Sparse LU, ILU are important kernels for science and engineering applications, used in practice on a regular basis
- Performance more sensitive to latency than dense case
- Continuing developments funded by DOE SciDAC projects
  - Integrate into more applications
  - Hybrid model of parallelism for multicore/vector nodes, differentiate intra-node and inter-node parallelism
    - Hybrid programming models, hybrid algorithms
  - Parallel HSS precondtioners
  - Parallel hybrid direct-iterative solver based on domain decomposition

SuperLU tutorial 47

# Exercises of SuperLU\_DIST



https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/ ATPESC\_2014/Exercises/superlu/README.html

On vesta:

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu/

http://crd.lbl.gov/~xiaoye/SuperLU/slu\_hands\_on.html

# Examples in EXAMPLE/



- pddrive.c: Solve one linear system
- pddrive1.c: Solve the systems with same A but different righthand side at different times
  - Reuse the factored form of A
- pddrive2.c: Solve the systems with the same pattern as A
  - Reuse the sparsity ordering
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values
  - Reuse the sparsity ordering and symbolic factorization
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

# SuperLU\_DIST Example Program



### EXAMPLE/pddrive.c

- Five basic steps
  - 1. Initialize the MPI environment and SuperLU process grid
  - 2. Set up the input matrices A and B
  - 3. Set the options argument (can modify the default)
  - 4. Call SuperLU routine PDGSSVX
  - 5. Release the process grid, deallocate memory, and terminate the MPI environment

### Fortran 90 Interface in FORTRAN/



- All SuperLU objects (e.g., LU structure) are opaque for F90
  - They are allocated, deallocated and operated in the C side and not directly accessible from Fortran side.
- C objects are accessed via handles that exist in Fortran's user space
- In Fortran, all handles are of type INTEGER
- Example: FORTRAN/f\_5x5.f90

$$A = \begin{bmatrix} s & u & u \\ l & u & & \\ & l & p & \\ & & e & u \\ l & l & & r \end{bmatrix}, \quad s = 19.0, \ u = 21.0, \ p = 16.0, \ e = 5.0, \ r = 18.0, \ l = 12.0$$

# Exercises of SuperLU\_DIST



https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/ ATPESC\_2014/Exercises/superlu/README.html

On vesta:

/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/examples/superlu/gpfs/vesta-fs0/projects/FASTMath/ATPESC-2014/install/superlu/

http://crd.lbl.gov/~xiaoye/SuperLU/slu\_hands\_on.html

# Examples in EXAMPLE/



- pddrive.c: Solve one linear system
- pddrive1.c: Solve the systems with same A but different righthand side at different times
  - Reuse the factored form of A
- pddrive2.c: Solve the systems with the same pattern as A
  - Reuse the sparsity ordering
- pddrive3.c: Solve the systems with the same sparsity pattern and similar values
  - Reuse the sparsity ordering and symbolic factorization
- pddrive4.c: Divide the processes into two subgroups (two grids) such that each subgroup solves a linear system independently from the other.

# SuperLU\_DIST Example Program



### EXAMPLE/pddrive.c

- Five basic steps
  - 1. Initialize the MPI environment and SuperLU process grid
  - 2. Set up the input matrices A and B
  - 3. Set the options argument (can modify the default)
  - 4. Call SuperLU routine PDGSSVX
  - 5. Release the process grid, deallocate memory, and terminate the MPI environment

### Fortran 90 Interface in FORTRAN/



- All SuperLU objects (e.g., LU structure) are opaque for F90
  - They are allocated, deallocated and operated in the C side and not directly accessible from Fortran side.
- C objects are accessed via handles that exist in Fortran's user space
- In Fortran, all handles are of type INTEGER
- Example: FORTRAN/f\_5x5.f90

$$A = \begin{bmatrix} s & u & u \\ l & u & & \\ & l & p & \\ & & e & u \\ l & l & & r \end{bmatrix}, \quad s = 19.0, \ u = 21.0, \ p = 16.0, \ e = 5.0, \ r = 18.0, \ l = 12.0$$